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S U M M A R Y  
The thermal response of a laminar boundary layer flow near a stagnation point due to step wall temperature 
change is investigated when the elapsed time is large. The final approach to the steady state temperature field 
is shown to be characterized by exponential decay with time of perturbations from the steady state. The 
characteristic factors appearing in the exponents arise from the solution of an eigenvalue problem in ordinary 
linear differential equations. Results are presented for Prandtl numbers of 0.01 to 100 for two dimensional 
stagnation flow and 0.I to 10 for axisymmetrical stagnation flow. 
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l(t) 
2a 
22 

velocity component in the x-direction 
velocity component in the y-direction 
distance from the front stagnation, along the contour for two-dimensional boun- 
dary layer 
distance perpendicular to the surface 
temperature 
time 
kinematic viscosity 
thermal diffusivity 
dimensionless coordinate, defined in (11) 
dimensionless coordinate, defined in (11) 
function definined by (12) 
dimensionless temperature defined by (16) 
dimensionless time defined by (17) 
Prandtl number 
proportionality constant. K = 2U~o/R for a cylinder and 3Uoo/(2R) for a sphere; 
Uoo is the free stream velocity and R the radius 
thermal conductivity 
Heaviside unit operator = 0 for t < 0 and = 1 for t > 0 
first eigenvalue 
second eigenvalue 
stream function defined by (10) 
eigenfunction defined by (24) 
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F gamma function 
a =f"(0) = 1.2326 for two-dimensional stagnation and 0.9277 for axisymmetrical stagnation 
q instantaneous heat flux 
O(q, p) Laplace transform of O(q, ~) 

Subscripts 
ss steady state 
w conditions at wall 

free stream condition 

1 .  I n t r o d u c t i o n  

In a series of papers [1-3], the non-steady laminar, forced convective heat transfer at a 
front stagnation point due to a step change in the wall temperature was investigated. In these 
analyses, the solutions for the non-steady energy equations were obtained by a Laplace 
transform technique. Examining the results reported in [1-3] for the final decay to the steady 
state reveals an uncertainty in mathematical form which may be attributed to the pitfalls 
of the approximation method used or the drawback of the lack of uniqueness in their 
solution methods. Therefore, the paradox of how the non-steady heat transfer process 
approaches steady state remains to be answered, and the present investigation is aimed in 
this direction. 

In Ref. [1], Cess and Sparrow determined two appropriate asymptotic solutions, valid 
for small and large time. The large time solution is expressed in a perturbation of separable 
type with the integer power series in terms of the Laplace transform variable p.  It is, there- 
fore, the inverse transform of this series solution that has no physical meaning in the real 
time domain so that an approximate solution is constructed to fit the two asymptotic 
solutions in the Laplace plane. The final decay of the instantaneous wall heat flux to the 
steady state obtained from their results and expressed in the present notation may be given by: 

qw(Z) A 
- 1 + e - a l ~  e -a2~ qw,ss - ~ -  + BE + ... .  for �9 >> 1 (1) 

where the constants A, B, al and a2 are functions of the Prandtl number. In order to avoid 
the inherent difficulty encountered in [1] when the large time solution is expressed in terms 
of the power series expansion of the Laplace transform parameter p, Chao and Jeng [2] 
have used the perturbation transformation coupled with Meksyn's boundary layer variable 
to obtain a solution for large time in the Laplace plane. It is 

o o  

b,p" 
qw _ . = o  (2)  

- -  oo  

qw,ss 1 + ~ c,p" 
n = l  

where the b,'s and c,'s are constants depending on the Prandtl number. By ignoring terms 
involving second and higher degree in p, (the justification for this approximation is that 
when v becomes large, p becomes small), they obtained 
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_ _  qw('c) - 1 + e "~/cl. (3) 
qw,ss Cl C2 

Undoubtedly, if the terms of second degree in p appearing in (2) are retained, a different 
form of inverse transform will result. In order to overcome the drawback of the lack of 
uniqueness as described in the large time approximation presented in [2], Chen and Chat [3] 
applied the technique proposed in [4] to analyze the non-steady heat transfer of laminar 
boundary layers in wedge flow. To avoid obtaining the large time solution, they introduced 
the parameter V in the series expansion valid for small time, and expande d the solution in 
terms of (p + y) rather than p for small time (large p). The inverse transform of this series 
solution is, in turn, to match the known steady state solution and the value of ~ is then 
determined for the corresponding Prandtl number. For the wedge angle of re, which corre- 
sponds to two-dimensional stagnation flow, the final decay of surface flux to the steady- 
state as determined from their result takes the form 

qw('O 
- 1 + { 0 ~ ( 0 ) } - i  x 

qW~$S 

{ ( P r y  1 ~ u'(O)(2Pr,~)"/2(,~z)"/2-1 I n / 2 - 1 1 }  
\ 2rc~ I ~ + ,Z= ~ r[n/2] 1 ~,wZ e -'w" (4) 

where u'(0), 0o(0) and 7w are functions of the Prandtl number. Inspection of (1), (3) and (4) 
reveals that the steady state solution is shown to be approached in an exponential manner, 
but with a different weighting function which may or may not be a function of time. 

In this paper, the problem of final decay to the steady state of the title problem is re- 
investigated without resorting to the Laplace transform technique. The thermal response 
characteristic in two-dimensional and axisymmetrical stagnation flow is shown to be ex- 
ponential decay with time of perturbations from the steady state value. The characteristic 
factors in the exponents arise from the solution of an eigenvalue problem in ordinary linear 
differential equations. Two methods are proposed to determine eigenvalues for Prandtl 
numbers ranging from 0.01 to 100. The first method is a Karman-Pohlhausen integral 
technique which will be used to calculate the lowest eigenvalue. The second method is a 
finite difference technique by use of an electronic digital computer. An example of matching 
the present result to the small time solution obtained previously in [2] is given. 

2. Fundamental equations 

Assuming steady, incompressible flow with constant properties and negligible dissipation 
(small Mach number of the free stream), the governing boundary layer equations in the 
neighborhood of stagnation are 

,~(x~u) ~(xlv) 
Continuity: - -  + - 0, (5) 

ax ay 

where i = 0, 1, respectively, for the two-dimensional and axisymmetrical stagnation flow. 

Ou 8u 8Zu 
Momentum: u 0x + v 8y -- K2x + v --By 2 , (6) 
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where K is a constant which is related to the velocity just outside the boundary layer near 

the stagnation point. For  example, K has a value of 2U~o/R for a cylinder with radius R. 

c~T c~T ~3T OZT 
Energy: ~--7 + u -~x + v dy = c~ ~ .  (7) OyZ 

The boundary conditions for the velocity field are 

u(x, y) = v(x, y) = 0 for y = 0, 
(8) 

u(x, y) = U1 for y ~ o% 

where U1 designates the velocity at the edge of the boundary layer. The initial and boundary 

conditions for the temperature field are 

T(x,  y, t) = T| for t < 0, 

T(x,  y, t) = Too + (T~, - T~)l(t) for t > 0, y = 0, 

r (x ,  y, t) = T~ for y ~ oo. 

(9a) 
(9b) 

(9c) 

The continuity equation can be satisfied by introducing the stream function 4;, such that 

u = r ' v = - c3 x , 

where L is a representative length. The x and y coordinates will now be transformed by 

writing 

r - 2u~ , t / =  y 

We further introduce a new variable f(~, r/) such that 

/ v K  \~ f x V 

From equation (10), we find that 

Kx-~q , v = - (2~vK)~ f (13) u 

and the momentum equation (6) becomes 

1 
f "  + f f "  + - ~  (1 - f , 2 )  = 0 (14) 

where the primes denote differentiation with respect to t/, while f is a function of 17 only. 
The boundary conditions are 

f(0) = f ' ( 0 )  = 0 and f ' (oo)  = 1. (15) 

To transform the energy equation (7), we further introduce a dimensionless temperature, 

T - T ~  
0 = (16) 

T.-Too 
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and a dimensionless time parameter, 

2iKt 
z - (17) 

Pr 

It follows that 

00 020 00 60 
- + P r f  - 2 P r y ' 4 - -  (18) 

~'~ Oq 2 01"] 0 4 " 

Along the stagnation line, the last term in equation (t8) vanishes (00/04 = 0), which is the 
convective contribution parallel to the surface. It is a valid approximation to neglect that 
term for the stagnation point problem. The initial and boundary conditions become 

0(t/, "c) = 0 for z < 0, 

O(n,z)= l(z) for t / = 0 ,  z > 0 ,  (19) 

0(t/, ~) = 0 for t / ~  ~ , z  > 0. 

A complete solution of the problem involves solving equations (14) and (18) with their 
respective boundary conditions. 

3. Asymptotic solution for two dimensional stagnation flow when ~r is large 

A solution for large z is now sought in the form of a perturbation from the steady state 
00(1/). Therefore, let 

O(n, ~) = Oo(,0 + Oj(~, ~). (20) 

Upon substitution of (20) into (18) with (~0/0~ = O, there results 

Ok + PrfO'o = 0 (21) 

with 

00(0 ) = 1 and 00(oo) = 0, (21b) 

and 
001 

0'~ + PrfO'~ - (22a) 
av 

with 

01(~/,z)=0 for ~ /=0 ,  
(22b) 

01(~ ,z)=O for r / ~ .  

The initial condition with regard to time defines the particular "small time" solution to 
which the present large time solution may be joined, and will therefore remain unspecified. 
A procedure of integrating the steady state solution (21) and some numerical results have 
been given by Squire [5], Merk [6] and Meksyn [7]. The latter two authors showed that 
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1 0.6608Pr ~ 
-05(0)  = - (23) 

f [  exp{_Pr flfdrl}dq C(PF) 

where 

C(Pr) = 1 + 0.11583Pr -}  + 0.0441Pr -~ + 0.001t8Pr -1 

+ 0.00020Pr -~ _ 0.0031Pr -{- + . . . .  

Here some coefficients in c(Pr)  have been corrected by Chao and Jeng [2]. 
If  we assume that the perturbation dimensionless temperature 01(q, z) is separable so that 

01(q, z) = ~b(q) T(v), (24) 

then from (22) and (24), it becomes immediately evident that T(z) must be of the form 

T(~) = exp { - 2T} 

where t is a constant. It is apparent that if 2 is a positive and real value, then 0, will ex- 
perience exponential decay to zero as v -+ oo. In the next section, a quantitative discussion 
is made concerning ;t. The function ~(t/) therefore satisfies 

r + Prfr + 2~(~/) = 0 (25a) 

with 

r = ~b(oo) = 0. (255) 

Since the temperature external to the thermal boundary layer is independent of time, we 
expect the time-dependent perturbations to be confined to the thermal boundary layer. 
Thus we expect that ~(q) approaches zero exponentially as q ~ oo. For  some specific 
values of  i ,  we shall be able to find that q~, if they exist, possess this characteristic. It  is 
necessary to exclude the solutions of �9 for other values of 2 which approach zero alge- 
braically as q -+ oo. In this sense, the solution of (25) poses an eigenvalue problem for the 
parameter 2. The analogue criterion has also been used by Kelly [8] in obtaining the 
asymptotic solution for large time in the non-steady stagnation flow due to a step change 
in free stream velocity. 

3.1 Discussion of the eigenvalue 2 

In this section, we would like to Show that a perturbation of the form (24) decays expo- 
nentially to zero as time goes to infinity, thus implying stability of the steady state. It is 
therefore necessary to show that all possible eigenvalues must be positive real numbers. 
Let us introduce a new function defined by 

i YO?) = ~b(t/)exp [ 2 Jo 

into (25); one then obtains 

y,, _ ~ _ f  + f2 y = _ ) ~ y  (27a) 
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with 

Y(0) = Y(oo) = 0. (27b) 

Because f and f '  are both positive, the form of (27a) and the boundary conditions on Y 
fulfill the conditions given by Titchmarsh [9] for the existence of a discrete set of eigen- 
values, 2, (n = 1, 2 . . . .  ), where 2, tends to infinity as n tends to infinity. It can also be seen 
that the linear operator on the left-hand side of (27a) is self-adjoint, arid since the boundary 
conditions (27b) are regular, the theory of linear ordinary differential equations guarantees 
that the eigenvalues are real. In order to show that the eigenvalues are positive, (27a) is 
multiplied by Y*, which is the complex conjugate of Y, and integrated with respect to r/ 
from 0 to oo, to obtain 

f :  fO~ Pr Pr 2 ) } Y"Y*d~ + ~ _ __~_f, _ __4_f2 yy ,  d~ = 0. (28) 

After an integration by parts of the first term in (28), equation (28) becomes 

~ I (  P r ' p r 2 )  } 
Y*Y'I~ - Y'Y'*@ + 2 - - ~ - f  4 f 2  rY* dr/ = 0 (29) 

with Y(0) = Y*(0) = 0. The asymptotic form of Y' for large r/ is required in order to 
demonstrate the vanishing of the integrated term and the convergence of the integral as 
r/-~ ~ .  The asymptotic solution for f(r/) when r/-~ ~ is given by Rosenhead [10] as 

f = r / -  0.6479 (30) 

With this asymptotic form o f f ,  (27a) becomes 

{ Pr Pr2 } 
Y " +  2 2 4 (r/-0"6479)2 Y = 0  for r/>> 1 (31) 

which is a linear differential equation with irregular singularities at infinity, the solutions 
of which can be asymptotic with respect to the independent variable. The quantity 
(2 - Pr/2) in (31) may be neglected as compared to pr2(r/ - 0.6479)2/4. The dominant 
term for the asymptotic solution of (31) valid for large r/is then given by 

[,r } Y ,-, ~ ( r / -  0.6479) exp - -~- ( r / -  0.6479) 2 , (32) 

and then 

r '  N ( r / -  0.6479) exp - ~ - ( r / -  0.6479) 2 , (33) 

and when r / ~  0% Y' ~ 0. With the integrated term set to zero, (29) may therefore be 
written as 

+ m - ~ - f  + - - ~ - f  - = 0 .  (34) 
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Since f '  and Y'Y"* are positive throughout, the above integral can not be equal to zero 
for negative values of )~. Therefore the eigenvalues are positive, if they exist. Thus we have 
shown that all possible eigenvalues are positive real numbers. 

3,2, Numerical determination of the eigenvalues and eigenfunctions for two dimengionM st~cg- 
nation flow 

Equation (25) will be used to calculate the eigenvalues. First, the Karman-Pohlhausen 
integral method will be employed to calculate the approximate lowest eigenvalues and then 
a more accurate determination of the first two eigenvalues are obtained by using an elec- 
tronic digital computer for Prandtl numbers ranging from 0.01 to 100. 

To apply the Karman-Pohlhau~en lechnique, (25a) is first inlegrated to give 

[~']~ + P,[[O]~ - P r j  ~ o ~f'd~ + ~ ~drl = 0, (35) 

and by the use of boundary condition (25b) and also ~'(co) = 0, ,~ can be expressed as 

0 

In order to integrate (36), the forms off '( t l)  and ~(q) should be assumed. We assume that 
f'(tl) can be expressed approximately [8] in the form 

f'(rl) = 1 - 1.3075 exp { -  1.7799~} + 0.3075 exp { -  3.5599rl) (37) 

where the numerical constants are chosen to ~atisfy the boundary conditions ([ 5) and give 
(37) the best fit to known data for f'(q), We now assume 4~(q) to be of the form 

~(r/) = r/e -e"~. (38) 

The above function satisfies ~ ( 0 ) =  ~ ' ( ~ ) =  ~ " ( 0 ) =  0, where the last condition is 
obtained by evaluating (25a) at r/ = l) In assuming ~(~) ~o take the form (38), we have 
r~grm~l~zed the eigenfunction~ by ~mposing ~he conditions ~'(0) = l, Obviously this nor- 
malization will not affect the final resuttz, The incorrect exponential behavior of  (37) and 
(38) as t / ~  oz is a~sumed to be unimportant in the evaluation of the integral in (36). An 
additional integral relation, which is required to determine the constant/~ appearing in 
(38), is obtained by multiplying (25a) by 4~' and integrating to get 

f; ; # e"rS'd~ + t'r f (e ' )  2d~ + ,~ e ~ ' d ~  = 0. (39) 

After integration by parts and applying the boundary condttton~, (39) becomes 

2 P r f ~ f ( ~ ' ) ~ d q = l  (40) 
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which does not involve 2. We may thus determine fl by substituting the differential form of 
(35) and f obtained from the integration of (37) into (40). Once fl is determined, ;~ may be 
calculated from (36). The results of fl and 2 for various Prandtl numbers are tabulated in 
Table 1. 

TABLE 1 

Values of fl and the first eigenvalue obtained by the integral method for 
two-dimensional stagnation flow. 

Pr fl 2~ 

0.01 0.004621 0.01923 
0.1 0.04050 0.1781 
0.7 0.2277 1.066 
1.0 0.3078 1.456 

10 1.894 9.463 
100 9.865 50.72 

TABLE 2 

The first and second eigenvalues for two-dimensional stagnation flow. 

Pr 21 ~2 

0.01 0.01951 0.03931 
0.1 0.1840 0.3758 
0.7 1.1130 2.363 
1.0 1.518 3.266 

10.0 9.520 22.377 
100.0 49.70 121.77 

More accurate first and second eigenvalues and the corresponding eigenfunctions for various 
Prandtl numbers are obtained by using the IBM 360 digital computer. The numerical inte- 
gration of (14) and (25) is achieved by employing a fourth order Runge-Kutta numerical 
integration procedure incorporated onto a computer program which may continuously 
assign the value of )~. The increment of )~ varies from Prandtl number to Prandtl number. 
The final determination of the eigenvalues, 2, is done by observing the resulting behavior 
of ~, which has a smooth exponential decay at infinity; this criterion led to the eigenvalues 
shown in Table 2. 

It is noticed that the first eigenvalue obtained by the Karman-Pohlhausen method is a 
very accurate approximation. Comparing with the exact value, they differ by less than 4 
for the range of Prandtl numbers studied. The first two eigenfunctions for Pr = 0.7 are 
plotted in Fig. 1. Data for other eigenfunctions for the cases of Pr selected in this study 
may be found in [11]. 

One may see from Fig. 1 that ~ exhibits non zero behavior between its end points. Because 
has no zero in its assumed form in (38), the eigenvalues in Table 1 obtained by the Kar- 

man-Pohlhausen integral technique should be an approximation to the lowest eigenvalue. 
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1.0 

~ - ~  ~ Two-dimensional 

0.8 f N , ~  - - -  Axmymmetncal 
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0.2 "~ " " , ,  
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-0 .2  

-0 .4  t t ~ t l 
0 I 2 3 4 5 6 

'1 
Figure 1. First two eigenfunction for Pr  = 0.7. 
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Figure 2. Final development of non-steady temperature field for Pr = 0.7. 
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With the values of  2,'s and ~, 's obtained, the desired nonsteady temperature field for 
large �9 can be expressed as 

co 

0(q, ~) = 0o(q) + Z An~),(q, ~,) e-a"~. (41) 
n- - -1  

The constants A,'s will depend, in some way, upon the initial growth of the thermal boun- 
dary layer. The determination of An's by matching the value of (41) and its derivative to 
the small time solution of [2] will now be discussed. 

The instantaneous and steady-state wall flux are given respectively by 

qw = - k  -~y = -k (Tw - T~) 0'(0, z) (42) 

and 
/ K \  ~ 

q~,~s = - k ( T ~ -  To~)(-~-) 0;(0). (43) 
\ , ,  

Therefore 

1 | 
q~ - 1 + =~i An e-a"~' for large z. (44) 

A simple numerical match of  (44) to the small time solution of [2], i.e., 

qw _ C(Pr) { 1 aPr Pr ~ + 0 
qw,,~ 0.6608Pr* _ r(�89 ~-~ + 0 + 0 + 8 z 1 6 / ' ( ~  

a2pr(Pr + 2) aPr(Pr + 2) Pr(Pr + 4) 
+ z ~ z 3 + z ~ 

128r(�89 128r(4) 512r(~) 

a3pr[1 + Pr(45Pr - 1)] z4 } 
- 512r(5) + (45) 

will be attempted here to determine A~ and A2. Both the values of  q~,/q~,,~s and its first 
derivative are matched at an appropriate dimensionless time, z j, at which the two asympto- 
tic solutions (44) and (45) are joined. Values of zj given in Table 2 of [2] were used for the 
matching. The results are shown in Table 3. With the evaluation of An's, the final develop- 
ment of  the transient temperature field becomes completely determined and is given by (41). 
They are illustrated in Fig. 2 for Pr = 0.7. The results show that at z = 4, considerable 
development of the transient temperature field has already taken place and all data points 
fall on or within one percent of the steady-state values. For engineering calculations, this 

TABLE 3 

Values of the constants A1 and A2 

Pr 0.1 0.7 1.0 10 100 

AI -0 .2615 -0 .5633 -0 .6940  - 1.6928 - 3.829 
A2 0.01015 1.649 2.572 8.701 35.270 
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t ime may be interpreted as the time required to reach steady-state. It  is also seen from 

Fig. 2 that the transient temperature profile approaches steady-state uniformly. This is in 
contrast with the unsteady heat transfer for flow over a flat plate in which, for large z, the 
departure from the steady-state is ultimately concentrated near the wall [13]. I t  is worth- 

while to mention that the present technique may be also applied to obtain the solution for 
large time due to a step change in wall heat flux. 

4. Axially symmetric stagnation flow 

As the analysis in this case is quite similar to that for two-dimensional flow, we shall merely 

present the results supplemented with a few brief comments when deemed desirable. The 
momentum equation for this case is given by (14) with i = 1. Using the same transformation 

variables as defined in (20) and following a similar procedure, one obtains the non-steady 
temperature profile as expressed in (41). The steady wall temperature gradient is given by 

0.6011Pr ~ 
- 05(0) = (46) 

Ca(Pr) 
where 

Ca(Pr) = 1 + 0.08460Pr --~ + 0.02352Pr -~ + 0.00911Pr -1 

+ 0.00021Pr -@ + 0.00089Pr -~ + . . . .  

In complete analogy to the steps described in the proceeding sections, the eigenvalues and 
eigenfnnctions are obtained from (25) by using an electronic computer. No attempt was 
made to use the Karman-Pohlhausen integral method for this case. As before, algebraic 
decay of the solution at infinity is excluded in favor of  exponential decay. The first two 

eigenvalues are tabulated in Table 4 for the various Prandtl numbers. 

TABLE 4 

Thefirstandseconde~envalues~raxisymmetricalstagnationheattransfer 

Pr ~1 ~2 

0.1 0.18038 0.3701 
0.7 1.0507 2.267 
1.0 1.418 3.109 

10 8.339 19.950 

The corresponding eigenfunctions are plotted in Fig. 1 for the case of  Pr = 0.7. The eigen- 
functions for other values of the Prandtl number are given in Ref. [11]. 
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